
The	8-queens	problem

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.7

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction

• In	this	lesson,	a	classic	example	of	general	
recursion:	the	eight	queens	problem.

• Along	the	way	we'll	learn	something	more	
about	layered	design.

2

Layered	Design
• In	layered	design,	we	write	a	data	design	and	a	
set	of	procedures	for	each	data	type.

• We	try	to	manipulate	the	values	of	the	type	only	
through	the	procedures.

• We	already	did	this	once– we	hooked	things	up	
so	that	our	graph	programs	(reachables and	
path?)	didn't	care	how	the	graphs	were	
represented,	so	long	as	we	had	a	successor
function	that	gave	right	answers.

• In	general,	we	start	with	the	lowest-level	pieces	
and	work	our	way	up.

3

The	problem	for	this	lesson:	8-queens	

• Find	a	placement	of	8	queens	on	a	chessboard	
so	that	no	queen	can	capture	another	queen.

• Here's	one	solution:

4source

What	can	a	queen	capture?

• A	queen	can	move	any	number	of	spaces	
horizontally,	vertically,	or	diagonally

5

©	2009	Bigriddles

What	can	a	queen	capture?

• If	the	queen	is	at	row	r	and	column	c,	then	it	
can	attack	any	square	(r',	c')	such	that

• r'	=	r			(horizontal	movement)
• c'	=	c		(vertical	movement)
• r'+c'	=	r+c (northwest-southeast	movement)
• r'-c'	=	r-c				(northeast-southwest	movement)

6

Of	course,	we'll	generalize	to	boards	of	
other	sizes

• and	our	data	representation	should	be	
independent	of	board	size.

• If	we	need	information	about	the	board	size,	
we'll	put	that	in	an	invariant.

7

Data	Design	for	Queen
;; Queens:
(define-struct queen (row col))
;; A Queen is a (make-queen PosInt PosInt)

;; Queen Queen -> Boolean
;; STRATEGY: Use template for Queen on q1 and q2
(define (threatens? q1 q2)

(or
(= (queen-row q1) (queen-row q2))
(= (queen-col q1) (queen-col q2))
(=
(+ (queen-row q1) (queen-col q1))
(+ (queen-row q2) (queen-col q2)))

(=
(- (queen-row q1) (queen-col q1))
(- (queen-row q2) (queen-col q2)))))

;; Queen ListOfQueen -> Boolean
;; STRATEGY: Use HOF ormap on other-queens
(define (threatens-any? this-queen other-queens)

(ormap
(lambda (other-queen) (threatens? this-queen other-queen))
other-queens))

8

Data	Design

• Define	a	legal	configuration	to	be	a	set	of	queens	
on	squares	that	can't	attack	each	other.

• Since	no	two	queens	can	occupy	the	same	row,	
we'll	only	represent	legal	configurations	of	the	
form

{(1,c1),	...,	(k,	c_k)}
for	some	k.

• We’ll	represent	them	as	a	list	in	reverse	order:
((k	c_k)	(k-1,	c_k-1)	...	(1,	c1))

9

Operations	on	configurations
;; : -> LegalConfig
(define empty-config empty)

;; legal-to-add-queen? : PosInt LegalConfig -> Bool
;; GIVEN: a column col and a legal configuration
;; ((k, c_k), (k-1, c_k-1), ... (1, c1))
;; RETURNS: true iff adding a queen at row k+1 and column col
;; would result in a legal configuration.
;; STRATEGY: Cases on whether the configuration is empty.
(define (legal-to-add-queen? col config)

(or
(empty? config) ;; first queen is always legal
(local

((define next-row (+ 1 (length config)))
(define new-queen (make-queen next-row col)))

(not (threatens-any? new-queen config)))))

10

None	of	the	old	
queens	 threaten	
each	other,	 so	we	
only	need	 to	check	
whether	the	new	
queen	 threatens	
any	of	the	old	
queens.

Operations	on	Configurations	(2)
;; place-queen : PosInt LegalConfig -> LegalConfig
;; GIVEN: a column col
;; and a legal config of some length k
;; WHERE: a new queen at (k+1, col) wouldn’t threaten
;; any of the existing queens.
;; RETURNS: the given configuration with a new queen
;; added at (k+1,col)
;; STRATEGY: Cases on whether config is empty
(define (place-queen col config)

(if (empty? config)
(list (make-queen 1 1))
(local

((define next-row (+ 1 (length config)))
(define new-queen (make-queen next-row col)))

(cons new-queen config))))

11

It	turns	out	to	be	useful	 to	
separate	out	 legal-to-add-
queen?	as	a	separate	function.

Operations	on	configurations	(3)
;; Config PosInt -> Boolean
;; RETURNS: Is the configuration complete for a board of
;; size n?
;; STRATEGY: combine simpler functions

(define (config-complete? config size)
(= size (length config)))

12

The	General	Problem
;; complete-configuration :
;; LegalConfig PosInt-> MaybeLegalConfig
;; GIVEN: a legal configuration and the size of the board
;; RETURNS: an extension of the given configuration to the given
;; size, if there is one, otherwise false.
;; STRATEGY: Recur on each legal placement of next queen.
;; DETAILS: Given ((k, c_k), (k-1, c_k-1), ... (1, c1)), we
;; generate all the configurations
;; ((k+1, c_k+1), (k, c_k), (k-1, c_k-1), ... (1, c1))
;; and recur on each of them until we find one that works.
;; HALTING MEASURE: (- size (length config))

13

Algorithm

• If	config is	already	complete,	it	is	its	own	
completion:	the	problem	is	trivial.

• Otherwise,	look	at	each	of	the	successors	of	c
in	turn,	and	choose	the	first	completion.

14

In	other	words,	...

Top	Level
;; Nat -> MaybeLegalConfig
;; STRATEGY: Call a more general function
(define (nqueens n)
(complete-configuration empty-config n))

15

Function	Definition
;; HALTING MEASURE: (- size (length config))
(define (complete-configuration config size)
(cond
[(= (length config) size) config]
[else
(first-success
(lambda (next-config)
(complete-configuration next-config size))

(legal-successors config size))]))

16

legal-successors
;; LegalConfig Nat -> ListOfLegalConfig
;; GIVEN a legal configuration
;; ((k, c_k), (k-1, c_k-1), ... (1, c1))
;; RETURNS: the list of all legal configurations
;; ((k+1, col), (k, c_k), (k-1, c_k-1), ... (1, c1))
;; for col in [1,size]
;; STRATEGY: Use HOF filter on [1,n] to find all places on
;; which it is legal to place next queen. Use map on the
;; result to construct each such configuration.

(define (legal-successors config size)
(map

(lambda (col) (place-queen col config))
(filter

(lambda (col) (legal-to-add-queen? col config))
(integers-from 1 ncols))))

17

Help	Functions

;; integers-from : Integer Integer -> ListOfInteger
;; GIVEN: n, m
;; RETURNS: the list of integers in [n,m]
;; STRATEGY: recur on n+1; halt when n > m.
;; HALTING MEASURE: max(0,m-n).

(define (integers-from n m)
(cond
[(> n m) empty]
[else (cons n (integers-from (+ n 1) m))]))

;; (X -> MaybeY) ListOfX -> MaybeY
;; first elt of lst s.t. (f elt) is not false; else false
;; STRATEGY: Use template for ListOfX on lst

(define (first-success f lst)
(cond
[(empty? lst) false]
[else
(local ((define y (f (first lst))))
(if (not (false? y))

y
(first-success f (rest lst))))]))

18

first-success is	like	ormap,	
but	in	ISL	ormap requires	f
to	be	(X	->	Bool),	not	 (X	->	
MaybeY). In	full	Racket,	
we	could	just	use	ormap.

Output
> (nqueens 1)
(list (make-queen 1 1))
> (nqueens 2)
#false
> (nqueens 3)
#false
> (nqueens 4)
#false
> (nqueens 5)
(list
(make-queen 5 4)
(make-queen 4 2)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))
> (nqueens 6)
#false
> (nqueens 7)
(list
(make-queen 7 6)
(make-queen 6 4)
(make-queen 5 2)
(make-queen 4 7)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))
>

19

> (nqueens 8)
(list
(make-queen 8 4)
(make-queen 7 2)
(make-queen 6 7)
(make-queen 5 3)
(make-queen 4 6)
(make-queen 3 8)
(make-queen 2 5)
(make-queen 1 1))
> (nqueens 9)
(list
(make-queen 9 5)
(make-queen 8 7)
(make-queen 7 9)
(make-queen 6 4)
(make-queen 5 2)
(make-queen 4 8)
(make-queen 3 6)
(make-queen 2 3)
(make-queen 1 1))

> (nqueens 10)
(list
(make-queen 10 7)
(make-queen 9 4)
(make-queen 8 2)
(make-queen 7 9)
(make-queen 6 5)
(make-queen 5 10)
(make-queen 4 8)
(make-queen 3 6)
(make-queen 2 3)
(make-queen 1 1))
> (nqueens 11)
(list
(make-queen 11 10)
(make-queen 10 8)
(make-queen 9 6)
(make-queen 8 4)
(make-queen 7 2)
(make-queen 6 11)
(make-queen 5 9)
(make-queen 4 7)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))

> (nqueens 12)
(list
(make-queen 12 4)
(make-queen 11 9)
(make-queen 10 7)
(make-queen 9 2)
(make-queen 8 11)
(make-queen 7 6)
(make-queen 6 12)
(make-queen 5 10)
(make-queen 4 8)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))

You	should	check	by	hand	
to	see	that	there	are	no	
solutions	for	n	=	2,3,4,	

and	6.

Layered	Design

• We	designed	our	system	in	3	layers:
1. Queens.		The	operations	were	make-queen,	

queen-row,	and	threatens?
2. Configurations.		The	operations	were	empty-

config,	config-complete?, legal-to-add-queen?,	
and	place-queen.

3. Search.		This	was	the	main	function	complete-
configuration	and	its	helper	legal-successors.

20

These	were	the	only	operations	
used	by	the	configuration	

functions

These	were	the	only	operations	on	
configurations	 used	by	layer	3.

Information-Hiding

• At	each	level,	we	could	have	referred	to	the	
implementation	details	of	the	lower	layers,	
but	we	didn't	need	to.

• We	only	needed	to	refer	to	the	procedures	
that	manipulated	the	values	in	the	lower	
layers.

• So	when	we	code	the	higher	layers,	we	don't	
need	to	worry	about	the	details	of	the	lower	
layers.

21

Information-Hiding	(2)

• We	could	have	written	3	files:	queens.rkt,	
configs.rkt,	and	search.rkt,	with	each	file	
provide-ing just	those	few	procedures.

• In	larger	systems	this	is	a	must.		It	is	the	major	
topic	of	Managing	System	Design	(aka	
Bootcamp 2)

22

Information-Hiding	(3)

• These	procedures	form	an	interface	to	the	
values	in	question.

• If	you	continue	along	this	line	of	analysis,	you	
will	be	led	to	objects	and	classes	(next	week's	
topic!).

23

Information-Hiding	(4)

• You	use	information-hiding	every	day.
• Example:	do	you	know	how	Racket	really
represents	numbers?		Do	you	care?	Ans:	No,	
so	long	as	the	arithmetic	functions	give	the	
right	answer.

• Similarly	for	file	system,	etc:	so	long	as	fopen,	
fclose,	etc.	do	the	right	thing,	you	don't	care	
how	files	are	actually	implemented.	

24

Except	for	
performance,	
of	course.

Summary

• In	this	lesson,	we	wrote	a	solution	to	the	n-
queens	problem.
– we	used	generative	recursion
– with	a	list	of	subproblems.

• We	constructed	our	solution	in	layers
– At	each	layer,	we	got	to	forget	about	the	details	of	
the	layers	below

– This	enables	us	to	control	complexity:	to	solve	our	
problem	while	juggling	less	stuff	in	our	brains.

25

Next	Steps

• Study	the	file	08-9-queens.rkt	in	the	Examples	
folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	8.5	
• Go	on	to	the	next	lesson

26

