
The	8-queens	problem

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	8.7
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Introduction

• In	this	lesson,	a	classic	example	of	general	
recursion:	the	eight	queens	problem.

• Along	the	way	we'll	learn	something	more	
about	layered	design.
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Layered	Design
• In	layered	design,	we	write	a	data	design	and	a	
set	of	procedures	for	each	data	type.

• We	try	to	manipulate	the	values	of	the	type	only	
through	the	procedures.

• We	already	did	this	once– we	hooked	things	up	
so	that	our	graph	programs	(reachables and	
path?)	didn't	care	how	the	graphs	were	
represented,	so	long	as	we	had	a	successor
function	that	gave	right	answers.

• In	general,	we	start	with	the	lowest-level	pieces	
and	work	our	way	up.
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The	problem	for	this	lesson:	8-queens	

• Find	a	placement	of	8	queens	on	a	chessboard	
so	that	no	queen	can	capture	another	queen.

• Here's	one	solution:
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What	can	a	queen	capture?

• A	queen	can	move	any	number	of	spaces	
horizontally,	vertically,	or	diagonally
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What	can	a	queen	capture?

• If	the	queen	is	at	row	r	and	column	c,	then	it	
can	attack	any	square	(r',	c')	such	that

• r'	=	r			(horizontal	movement)
• c'	=	c		(vertical	movement)
• r'+c'	=	r+c (northwest-southeast	movement)
• r'-c'	=	r-c				(northeast-southwest	movement)

6



Of	course,	we'll	generalize	to	boards	of	
other	sizes

• and	our	data	representation	should	be	
independent	of	board	size.

• If	we	need	information	about	the	board	size,	
we'll	put	that	in	an	invariant.
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Data	Design	for	Queen
;; Queens:
(define-struct queen (row col))
;; A Queen is a (make-queen PosInt PosInt)

;; Queen Queen -> Boolean
;; STRATEGY: Use template for Queen on q1 and q2
(define (threatens? q1 q2)

(or
(= (queen-row q1) (queen-row q2))
(= (queen-col q1) (queen-col q2))
(= 
(+ (queen-row q1) (queen-col q1))
(+ (queen-row q2) (queen-col q2)))

(= 
(- (queen-row q1) (queen-col q1))
(- (queen-row q2) (queen-col q2)))))

;; Queen ListOfQueen -> Boolean
;; STRATEGY: Use HOF ormap on other-queens
(define (threatens-any? this-queen other-queens)

(ormap
(lambda (other-queen) (threatens? this-queen other-queen))
other-queens))
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Data	Design

• Define	a	legal	configuration	to	be	a	set	of	queens	
on	squares	that	can't	attack	each	other.

• Since	no	two	queens	can	occupy	the	same	row,	
we'll	only	represent	legal	configurations	of	the	
form

{(1,c1),	...,	(k,	c_k)}
for	some	k.

• We’ll	represent	them	as	a	list	in	reverse	order:
((k	c_k)	(k-1,	c_k-1)	...	(1,	c1))
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Operations	on	configurations
;; : -> LegalConfig
(define empty-config empty)

;; legal-to-add-queen? : PosInt LegalConfig -> Bool
;; GIVEN: a column col and a legal configuration
;;   ((k, c_k), (k-1, c_k-1), ... (1, c1))
;; RETURNS: true iff adding a queen at row k+1 and column col
;; would result in a legal configuration.
;; STRATEGY: Cases on whether the configuration is empty.
(define (legal-to-add-queen? col config)

(or 
(empty? config) ;; first queen is always legal
(local

((define next-row (+ 1 (length config)))
(define new-queen (make-queen next-row col)))

(not (threatens-any? new-queen config)))))
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None	of	the	old	
queens	 threaten	
each	other,	 so	we	
only	need	 to	check	
whether	the	new	
queen	 threatens	
any	of	the	old	
queens.



Operations	on	Configurations	(2)
;; place-queen : PosInt LegalConfig -> LegalConfig
;; GIVEN: a column col 
;;        and a legal config of some length k 
;; WHERE: a new queen at (k+1, col)  wouldn’t threaten
;; any of the existing queens.
;; RETURNS: the given configuration with a new queen
;; added at (k+1,col)
;; STRATEGY: Cases on whether config is empty
(define (place-queen col config)

(if (empty? config)
(list (make-queen 1 1))
(local

((define next-row (+ 1 (length config)))
(define new-queen (make-queen next-row col)))

(cons new-queen config))))
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It	turns	out	to	be	useful	 to	
separate	out	 legal-to-add-
queen?	as	a	separate	function.



Operations	on	configurations	(3)
;; Config PosInt -> Boolean
;; RETURNS: Is the configuration complete for a board of
;;  size n?
;; STRATEGY: combine simpler functions

(define (config-complete? config size)
(= size (length config)))
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The	General	Problem
;; complete-configuration : 
;;    LegalConfig PosInt-> MaybeLegalConfig
;; GIVEN: a legal configuration and the size of the board
;; RETURNS: an extension of the given configuration to the given
;; size, if there is one, otherwise false.
;; STRATEGY: Recur on  each legal placement of next queen.
;; DETAILS: Given ((k, c_k), (k-1, c_k-1), ... (1, c1)), we 
;;  generate all the configurations
;;  ((k+1, c_k+1), (k, c_k), (k-1, c_k-1), ... (1, c1))
;; and recur on each of them until we find one that works.
;; HALTING MEASURE: (- size (length config))
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Algorithm

• If	config is	already	complete,	it	is	its	own	
completion:	the	problem	is	trivial.

• Otherwise,	look	at	each	of	the	successors	of	c
in	turn,	and	choose	the	first	completion.
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Top	Level
;; Nat -> MaybeLegalConfig
;; STRATEGY: Call a more general function
(define (nqueens n)
(complete-configuration empty-config n))
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Function	Definition
;; HALTING MEASURE: (- size (length config))
(define (complete-configuration config size)
(cond
[(= (length config) size) config]
[else
(first-success
(lambda (next-config) 
(complete-configuration next-config size))

(legal-successors config size))]))
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legal-successors
;; LegalConfig Nat -> ListOfLegalConfig
;; GIVEN a legal configuration
;;   ((k, c_k), (k-1, c_k-1), ... (1, c1))
;; RETURNS: the list of all legal configurations 
;;   ((k+1, col), (k, c_k), (k-1, c_k-1), ... (1, c1))
;; for col in [1,size]
;; STRATEGY: Use HOF filter on [1,n] to find all places on
;;  which it is legal to place next queen.  Use map on the 
;;  result to construct each such configuration.

(define (legal-successors config size)
(map

(lambda (col) (place-queen col config))
(filter

(lambda (col) (legal-to-add-queen? col config))
(integers-from 1 ncols))))
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Help	Functions

;; integers-from : Integer Integer -> ListOfInteger
;; GIVEN: n, m
;; RETURNS: the list of integers in [n,m]
;; STRATEGY: recur on n+1;  halt when n > m.
;; HALTING MEASURE: max(0,m-n).

(define (integers-from n m)
(cond
[(> n m) empty]
[else (cons n (integers-from (+ n 1) m))]))

;; (X -> MaybeY) ListOfX -> MaybeY
;; first elt of lst s.t. (f elt) is not false; else false
;; STRATEGY: Use template for ListOfX on lst

(define (first-success f lst)
(cond
[(empty? lst) false]
[else
(local ((define y (f (first lst))))
(if (not (false? y))

y
(first-success f (rest lst))))]))
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first-success is	like	ormap,	
but	in	ISL	ormap requires	f
to	be	(X	->	Bool),	not	 (X	->	
MaybeY). In	full	Racket,	
we	could	just	use	ormap.



Output
> (nqueens 1)
(list (make-queen 1 1))
> (nqueens 2)
#false
> (nqueens 3)
#false
> (nqueens 4)
#false
> (nqueens 5)
(list
(make-queen 5 4)
(make-queen 4 2)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))
> (nqueens 6)
#false
> (nqueens 7)
(list
(make-queen 7 6)
(make-queen 6 4)
(make-queen 5 2)
(make-queen 4 7)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))
>
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> (nqueens 8)
(list
(make-queen 8 4)
(make-queen 7 2)
(make-queen 6 7)
(make-queen 5 3)
(make-queen 4 6)
(make-queen 3 8)
(make-queen 2 5)
(make-queen 1 1))
> (nqueens 9)
(list
(make-queen 9 5)
(make-queen 8 7)
(make-queen 7 9)
(make-queen 6 4)
(make-queen 5 2)
(make-queen 4 8)
(make-queen 3 6)
(make-queen 2 3)
(make-queen 1 1))

> (nqueens 10)
(list
(make-queen 10 7)
(make-queen 9 4)
(make-queen 8 2)
(make-queen 7 9)
(make-queen 6 5)
(make-queen 5 10)
(make-queen 4 8)
(make-queen 3 6)
(make-queen 2 3)
(make-queen 1 1))
> (nqueens 11)
(list
(make-queen 11 10)
(make-queen 10 8)
(make-queen 9 6)
(make-queen 8 4)
(make-queen 7 2)
(make-queen 6 11)
(make-queen 5 9)
(make-queen 4 7)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))

> (nqueens 12)
(list
(make-queen 12 4)
(make-queen 11 9)
(make-queen 10 7)
(make-queen 9 2)
(make-queen 8 11)
(make-queen 7 6)
(make-queen 6 12)
(make-queen 5 10)
(make-queen 4 8)
(make-queen 3 5)
(make-queen 2 3)
(make-queen 1 1))

You	should	check	by	hand	
to	see	that	there	are	no	
solutions	for	n	=	2,3,4,	

and	6.



Layered	Design

• We	designed	our	system	in	3	layers:
1. Queens.		The	operations	were	make-queen,	

queen-row,	and	threatens?
2. Configurations.		The	operations	were	empty-

config,	config-complete?, legal-to-add-queen?,	
and	place-queen.

3. Search.		This	was	the	main	function	complete-
configuration	and	its	helper	legal-successors.
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These	were	the	only	operations	
used	by	the	configuration	

functions

These	were	the	only	operations	on	
configurations	 used	by	layer	3.



Information-Hiding

• At	each	level,	we	could	have	referred	to	the	
implementation	details	of	the	lower	layers,	
but	we	didn't	need	to.

• We	only	needed	to	refer	to	the	procedures	
that	manipulated	the	values	in	the	lower	
layers.

• So	when	we	code	the	higher	layers,	we	don't	
need	to	worry	about	the	details	of	the	lower	
layers.
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Information-Hiding	(2)

• We	could	have	written	3	files:	queens.rkt,	
configs.rkt,	and	search.rkt,	with	each	file	
provide-ing just	those	few	procedures.

• In	larger	systems	this	is	a	must.		It	is	the	major	
topic	of	Managing	System	Design	(aka	
Bootcamp 2)
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Information-Hiding	(3)

• These	procedures	form	an	interface	to	the	
values	in	question.

• If	you	continue	along	this	line	of	analysis,	you	
will	be	led	to	objects	and	classes	(next	week's	
topic!).
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Information-Hiding	(4)

• You	use	information-hiding	every	day.
• Example:	do	you	know	how	Racket	really
represents	numbers?		Do	you	care?	Ans:	No,	
so	long	as	the	arithmetic	functions	give	the	
right	answer.

• Similarly	for	file	system,	etc:	so	long	as	fopen,	
fclose,	etc.	do	the	right	thing,	you	don't	care	
how	files	are	actually	implemented.	
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Except	for	
performance,	
of	course.



Summary

• In	this	lesson,	we	wrote	a	solution	to	the	n-
queens	problem.
– we	used	generative	recursion
– with	a	list	of	subproblems.

• We	constructed	our	solution	in	layers
– At	each	layer,	we	got	to	forget	about	the	details	of	
the	layers	below

– This	enables	us	to	control	complexity:	to	solve	our	
problem	while	juggling	less	stuff	in	our	brains.
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Next	Steps

• Study	the	file	08-9-queens.rkt	in	the	Examples	
folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Do	Guided	Practice	8.5	
• Go	on	to	the	next	lesson
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